

Index

03 09 23 **The Interdisciplinary Team Literature Review Product Demo** 04 25 12 Introduction **Ethics Experiment** 14 26 05 **Concept Selection Problem Statement Product Analysis** Criteria 16 29 06 **Functional Architecture Problem Rational** Results 07 19 30 **Stakeholder Analysis Development Iterations** Conclusion 80 22 31 **Risk Assessment Final Software** Recommendations and **Architecture Future Implementation**

The Interdisciplinary Team

Kshitij S RMSc. Management of Technology

Ujjayan DharMSc. Strategic
Product
Design

Ehsan Sadegh MSc. Complex Engineering & Management

Henk Jekel MSc. Robotics

Ramon Mozaffarian MSc. Complex Engineering & Management

Deepak SogasuMSc. Aerospace
Engineering

Introduction

- KLM: Implements VR in cabin crew training.
- Ineffective existing training methods.
- JIP: Feasibility of increasing training effectiveness through Adaptive AI.

Problem Statement

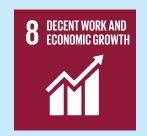
Exploring the use of Adaptive AI for sales department employee training at KLM

Constraints:

Latency in response generation, quantitative testing analysis to provide initial feasibility result in 10 weeks.

Method should be:

Scalable, ethically acceptable, culturally adaptable, technically and organizationally feasible, financially viable and desirable to the employees.


Problem Rational

Adaptive AI integration

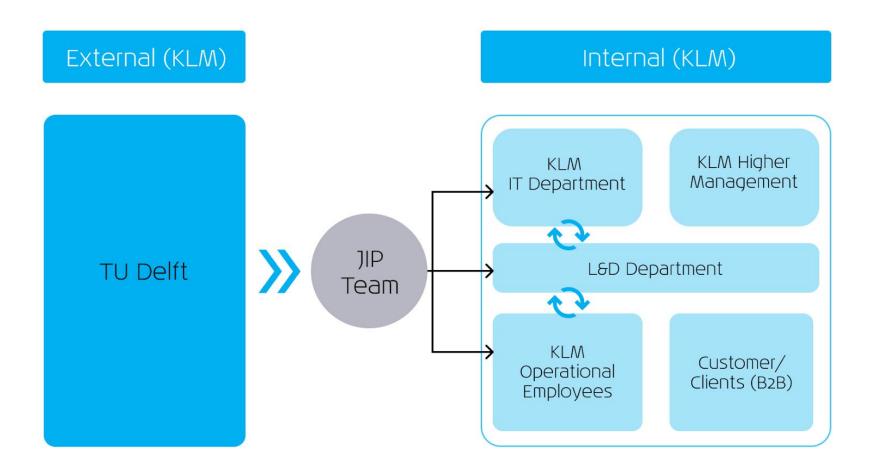
Double Bottom Line Goals

Tech-friendly Profit

Virtual training decreases the need for physical infrastructure and energy consumption. Adaptive AI enhances skill development, job satisfaction, productivity and organizational growth.

Opportunities

Use of Adaptive AI integration in the existing training programs


Achieve Sustainability Development Goals

Foster Responsible Innovation

Fly Responsibly

Stakeholder Analysis

Risk Assessment

	Category	Risk	Solution
	Technology	Technical glitches	Rigorous testing phase and regular updates
	Organisation	Inconsistencies in collaboration hinder progress	Foster inter-departmental collaboration with regular synchronized sessions
(A)	Privacy	Sensitive employee and customer data	Strong encryption and data controls centres
	Social	Resistance from staff towards new technology	Conduct practical workshops and encourage an open dialogue

Literature Review

Virtual Reality (VR) Defined

- VR encompasses various forms of mixed reality, such as augmented reality (AR), Mixed reality (MR), augmented virtuality (AV), and VR itself. These technologies offer different user experiences, often combining real-world and virtual elements (Zhang, 2014)*.
- In virtual reality, sight is key, but additional senses such as touch, **speech and sound**, among others, can also be used to improve the user experience. (Frigo and Barbosa, 2016)*.

Impacts of VR technologies

- Medical
- Design, Manufacturing, and Maintenance
- Mining
- Aerospace
- Military
- Entertainment

^{**}Ref: Zhang, W. (2014). On college oral english teaching in the base of virtual reality technology. 10.4028/www.scientific.net/AMM.687-691.2427

Frigo, E., Mauricio & Silva, & Barbosa, G. (2016). Augmented reality in aerospace manufacturing: A review. Journal of Industrial and Intelligent Information. https://doi.org/10.18178/jiii.4.2.125-130

Literature Review

Training challenges in the Airline Industry

- Applications in the airline industry, such as passenger recognition using augmented reality, have the potential to improve passenger services and crew efficiency (*Bellamy, 2017*).
- Al-powered adaptive training will make it more efficient and affordable as this technology will pay off in the long run, since training demands will be **cut by 30-50%.** (Klassen, 2021).

Integration of Adaptive AI in VR Training

- Technology's role in individualized training and cost savings and the potential benefits of Al-driven instruction systems in aviation.
- Current challenges faced are due to maintaining efficient end to end conversation and delays in AI integrated training.

^{**}Ref: Bellamy, W. (2017). 9 companies using augmented reality and virtual reality in aviation. http://www.aviationtoday.com/2017/08/24/9- companies- using- augmentedvirtual-reality-aviation/
Klassen, M. (2021). How using ai for pilot training makes aviation safer | paladin ai.medium. https://medium.com/paladin-ai/adaptive-pilot-training-makes-aviationsafer-and-cheaper-a8ce7d67f626

Literature Review

Why Adaptive Al?

- Generative AI models can make new things like text, pictures, or music all on its own, without much help from inputs thus making the generated data different in every instance.
- The gap in Generative AI depends on the quality of the initial training data, errors or biases in data can affect the model's output. (Su & Yang, 2023)
- Adaptive algorithms changes its behaviour based on data and tasks, improving over time and adapting to different conditions, which allows to improve its performance over time as per conditions. (Meskó et al, 2023)

Su, J., & Yang, W. (2023). Unlocking the power of ChatGPT: A framework for applying generative AI in education. ECNU Review of Education, 1–12. https://doi-org.tudelft.idm.oclc.org/10.1177/2096531

^{**}Ref: Meskó, B., Topol, E.J. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. npj Digit. Med. 6, 120(2023). https://doi-org.tudelft.idm.oclc.org/10.1038/s41746-023-00873-0

Ethics

Responsible Engineering criteria

- Privacy and Data Security
- Ethical Use case
- Diversity Inclusion

Ethics

3 P's (People, Profit, Planet)

- Improved Performance
- Enhanced Retention through increased immersion.(Granito et al, 2012)
- Reduce training costs: from €58.000.000/year to €40.600.000/year (KLM, Financial Statement, 2022).
- Faster and more effective model for training which pushes people into the workforce faster.
- Industry Leadership

^{**}Ref: Granito, Mark & Chernobilsky, Ellina. (2012). The Effect of Technology on a Student's Motivation and Knowledge Retention.

KLM Financial Statement, 2022, https://www.klmannualreport.com/wp-content/uploads/2023/04/KLM-Financial-statements_2022.pdf (after consulting with KLM personnel)

Concept Selection Criteria

Adaptive Al-Enhanced Existing Training Programs

Custom, real-life practice scenarios.

Arguments for the selection

- Aligns perfectly with sustainability goals.
- Seamlessly integrates multiple departments and expertise (Al Development, L&D, Sales).
- Technically feasible

Concept Selection Criteria

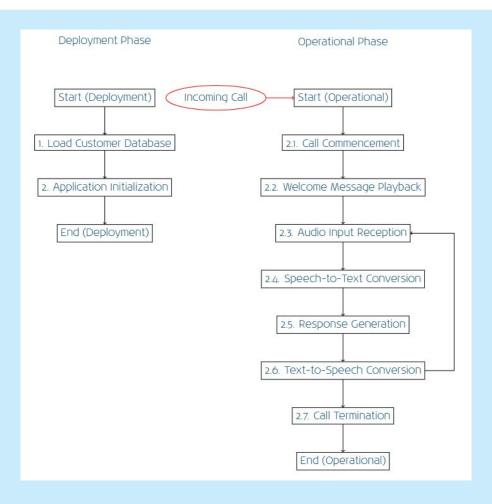
Description of current product

- Personalised, realistic scenarios for sales representatives.
- Adaptive AI that provides curated personas.

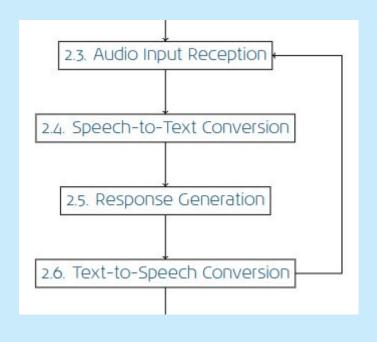
Functional Architecture

Systems engineering approach

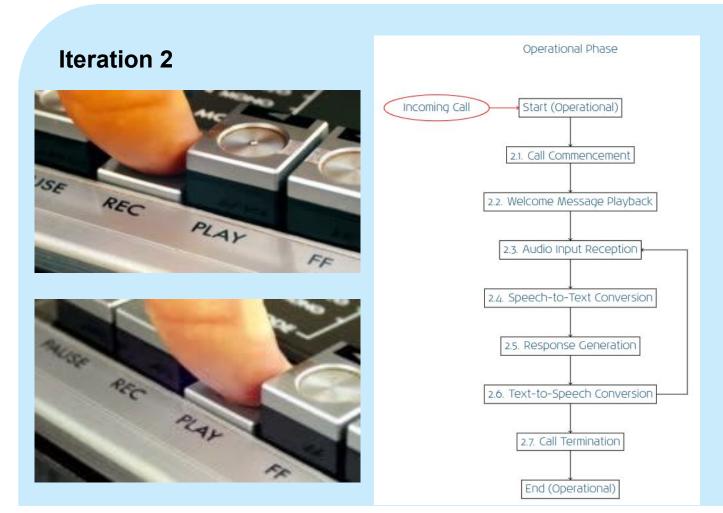
- Usage Scenario
- Main Phases:
 - Deployment Phase
 - Operational Phase
- Extracting Needs and Requirements
- Functional Hierarchy Tree
- Activity Diagram


Functional Architecture

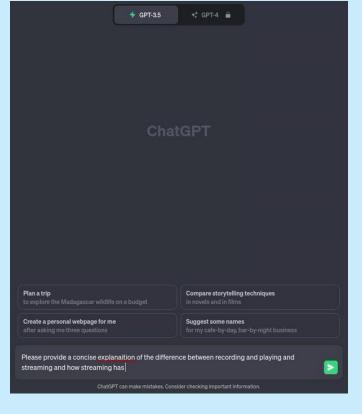
Usage scenario


Functional Architecture

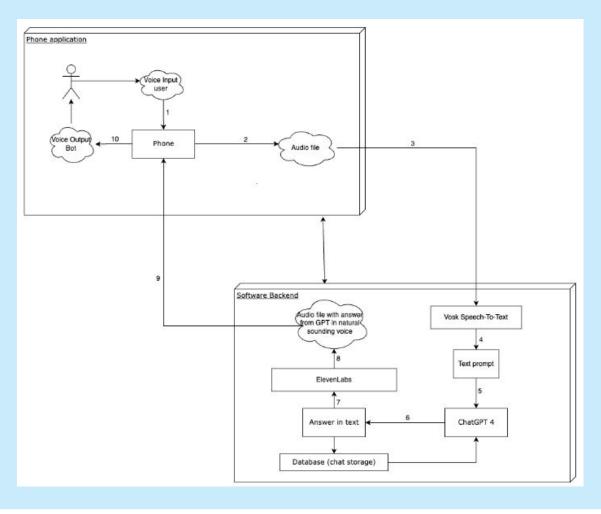
Activity Diagram


Development Iterations

Iteration 1



Development Iterations


Iteration 3

Development Iterations

- Python
- Javascript
- Disfluencies

Final Software Architecture

Product Demo

Demo:

- Customer: Rajeev Malhotra, the virtual CEO
- Objectives: price, culture and sustainability

• Instructions:

Could you please remain quiet?

Product Demo

Experiment

XR Lab, Team Discussion & Interaction with Participants

Product Analysis

Quantitative Analysis

Three Surveys

- Survey 1: Quality assessment existing employee training programs
- **Survey 2:** Quality assessment new AI training program
- Survey 3: Quality assessment new AI training program one day after training to control for enthusiasm bias

Participants

Participant ID	Department and Role	Familiarity with Al	
PI	XR Lab - Lead Developer	High	
P2	VR Gaussian splitting KLM Intern	Low	
P3	XR Lab - Intern	Moderate	
P4	Innovation track team - External VR Developer	Low	
P5	XR Centre of Excellence - External Developer	Low	
P6 XR Technical Specialist		Moderate	
P7 Visual Designer at KLM		Low	
P8	Senior Researcher for new technologies	High	
P9	Programmer	High	
PIO	Programmer	High	

12:29

Dear participant,

Thank you for your cooperation in this study on the measurement of the impact of the KLM AI Sales Employee training! This questionnaire is part of the Joint Interdisciplinary Project (JIP), a master's course at the TU Delft, in which interdisciplinary project teams of MSc students from different faculties work together full-time for ten weeks alongside a technologically innovative company to address a business case and create innovative impact.

The aim of this research is to measure the impact of the developed AI employee training for the sales department and compare it to the existing employee training, assessing the quality of training and the learning experience for employees, considering factors like (un)predictability, believability, and intuitiveness.

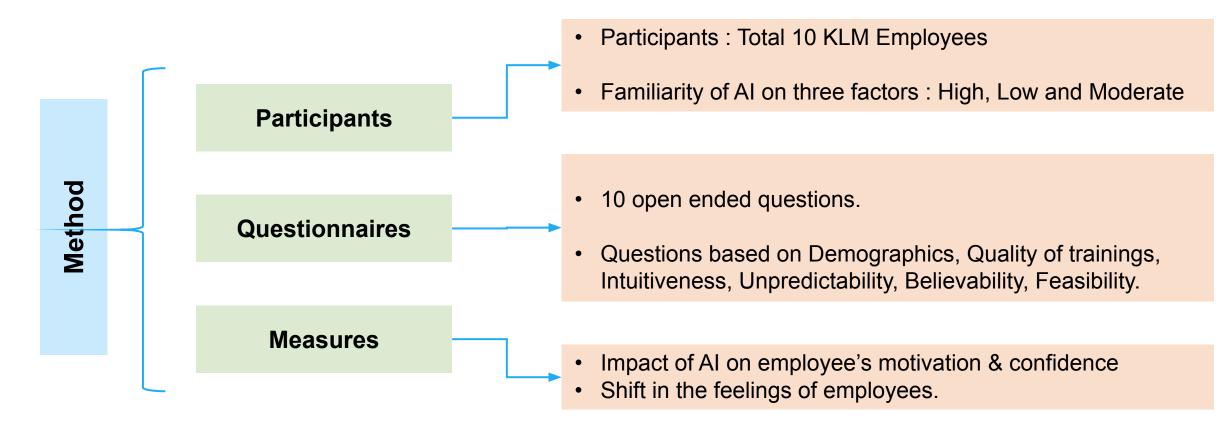
Product Analysis

Quantitative Analysis

Results

- Higher scores for overall quality, intuitiveness,
 unpredictability, and believability
- No significant difference in the difficulty
- Improved confidence, motivation, and cross-cultural communication skills
- No enthusiasm bias.

Al Bot Assessment


- Realistic voice
- Sufficient depth in conversations
- Feasible to implement in departments
- Mildly effective in incorporating unpredictable scenarios
- Long response time

	Rating Current Training	Rating New Al Training
Overall quality	4,3	7,1
Intuitiveness	4,9	7,6
Unpredictability	2,0	6,5
Difficulty	4,2	3,9
Believability	3,2	7,1

How would you rate	the level of difficulty of the training?	
Very easy		Very difficult
Difficulty	4	

Product Analysis

Qualitative analysis

Results

Unpredictability

- when you say like you can predict that what he's going to say next or how is the conversation going to I can't predict that Okay, I Have no idea what he's gonna react" p1
- it's fun because you can ask the bot anything you want and you can again answer back. And you have also control, which is, and again, going back to the unpredictability, you can anticipate any way you want, then you're not restricted by a script" p8

Believability

- "I think is very nice is answering in time, but he has behaves pretty human to say it like that, which I think was very nice p5
- "so if you should test this for instance by oh I've got a person on the line could you maybe try this call and not saying that it is a training bot how differently the conversation would be p1

Natural Conversation

- "Yeah, they could because they could really answer true and they could ask more. And it was more feasible because they didn't have to feel that there was an actor. They had to feel eventually that they were talking to something p10
- "Even though you kind of you stayed within his what he wanted, but you asked him something about he just gave a natural answer p3

Motivation

- Yeah, there's just no script. So it becomes fully unpredictable and that's a motivating factor to look upto in a conversation. p7
- "Yeah, I think it was very predictable, very intuitive actually. So people could learn a trick instead of learning a skill p10

Intuitiveness

- I can say that I was giving the goals of Rajeeb. I was giving his goals beforehand so I knew a little bit about what he was going to tell me so that felt a little bit too intuitive for me because I knew what was going to happen p4
- very intuitive because I could just Even if it didn't went the way I wanted it or that I expected you could always sidetrack and be like oh, okay Let's ask something else." p7

Quality of response.

- "was a realistic conversation but still in my mind I had I'm talking to a bot. Okay, so that was a bit that the combination of realistic and bots." p1
- "Yeah, I chose good potential because I think this is a really interesting way of like having these conversations and it did feel pretty natural, so I do think there's a there's a like a big potential in these kinds of technologies. p2

KLM 1.4.1 29

Themes

Conclusions

Adaptive AI offers personalized and cost-effective learning

A **boost** in sales crew **motivation** compared to traditional methods.

Has an impact on the **communication confidence** in the sales crew.

Improves customer relationships and services through personalized training

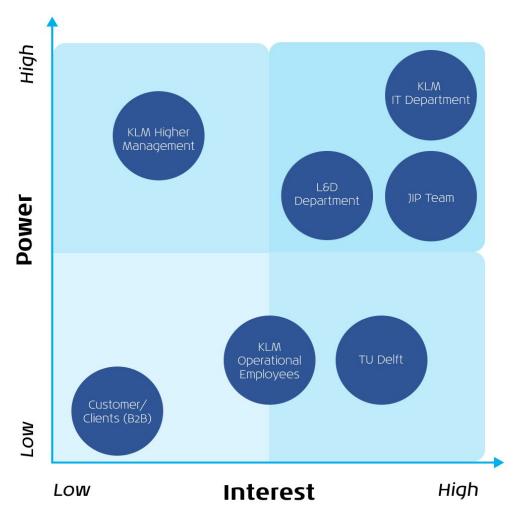
Al-driven voice communication ensures seamless and human-like interactions

Recommendations and future implementation

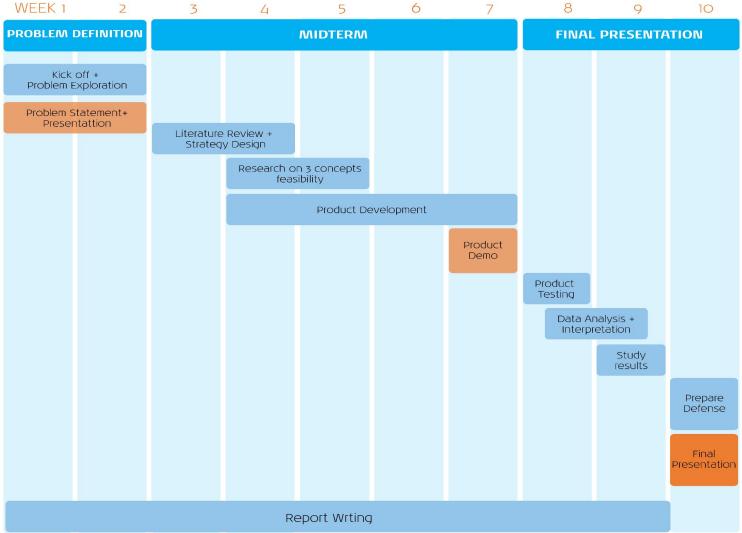
- Emotional Intelligence: All chatbots recognizing emotions for empathetic, personalized interactions.
- Enhanced Conversation Flow: Enhancing chatbots for better long conversations and smoother topic switches.
- Increased Learning and Adaptation: Enabling chatbots to learn and adapt from every conversation.
- Multi-Turn Conversations: Empowering chatbots for extended, complex natural conversations.

- **Digital Twin:** Adaptive AI bot can be embedded into a 3D tablet that can serve as an assistant, easing the corporate workflow.
- Integration with VR for cabin crew training: Offers stewardesses hands-on training to boost confidence in handling different cabin situations.

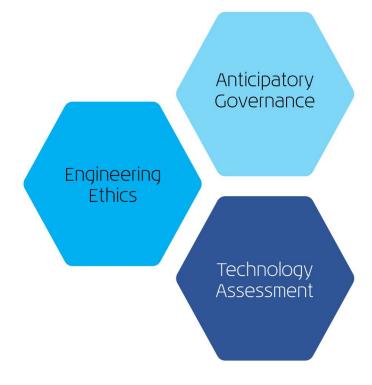
References


- Zhang, W. (2014). On college oral english teaching in the base of virtual reality technology. 10.4028/www.scientific.net/AMM.687-691.2427
- Frigo, E., Mauricio & Silva, & Barbosa, G. (2016). Augmented reality in aerospace manufacturing: A review. Journal of Industrial and Intelligent Information. https://doi.org/10.18178/jiii.4.2.125-130
- Bellamy, W. (2017). 9 companies using augmented reality and virtual reality in aviation. http://www.aviationtoday.com/2017/08/24/9- companies- using- augmented virtual-reality-aviation/
- Klassen, M. (2021). How using ai for pilot training makes aviation safer | paladin ai.medium. https://medium.com/paladin-ai/adaptive-pilot-training-makes-aviationsafer-and-cheaper-a8ce7d67f626
- Meskó, B., Topol, E.J. The imperative for regulatory oversight of large language models (or generative AI) in healthcare.
 npj Digit. Med. 6, 120(2023).https://doi-org.tudelft.idm.oclc.org/10.1038/s41746-023-00873-0
- Su, J., & Yang, W. (2023). Unlocking the power of ChatGPT: A framework for applying generative AI in education. ECNU Review of Education, 1–12. https://doi-org.tudelft.idm.oclc.org/10.1177/2096531

Questions?


Thank you for your attention!

Power Interest Grid



Project Plan

Responsible Innovation

- Adaptive AI into sales training, enhances personalized customer service
- Prioritizing data privacy in-line with GDPR guidelines
- KLM prioritizes inclusivity, transparency, accessibility and ethical innovation
- Standards of safety and security with Informed consent forms backed by customer feedback.

Table 5.47: All Statements

Statement	Description
Statement 1	The training adequately prepares me and provides enough confidence for communicating with sales customers
Statement 2	The training adequately prepares and motivates me for communicating with sales customers
Statement 3	The training incorporates unpredictable scenarios that simulate real-world unpredictability
Statement 4	The training enhances cross-cultural communication skills, deepens understanding of cultural differences, and enables us to better meet the diverse customer needs
Statement 5	The AI bot's response time in a typical conversation feels realistic
Statement 6	The AI bot has a realistic voice
Statement 7	The conversation with the AI bot had sufficient depth regarding the content
Statement 8	The introduction of the AI bot would be feasible in our department
Statement 9	The introduction of the AI bot would enhance the effectiveness of our current employee training programs

Table 5.50: Paired Samples Test

Pair	Paired Differences	Mean	95% Confidence Interval		Two-Sided p
			Lower	Upper	
1	Overal quality (1) - Overall quality (2)	-2.7455	-4.5696	-0.9213	0.007
2	Intuitiveness (1) - Intuitiveness (2)	-2.7636	-4.4098	-1.1174	0.004
3	Unpredictability (1) - Unpredictability (2)	-4.5273	-6.8389	-2.2156	0.001
4	Difficulty (1) - Difficulty (2)	0.2364	-1.4611	1.9339	0.763
5	Believability (1) - Believability (2)	-3.8545	-6.0495	-1.6596	0.003

Table 5.51: Wilcoxon Signed Rank Test

Null Hypothesis	P-value
The median of differences between the assessment of Statement 1 in Surveys 1 and 2 equals o. Related-Samples Wilcoxon Signed Rank Test	,031
The median of differences between the assessment of Statement 2 in Surveys 1 and 2 equals o. Related-Samples Wilcoxon Signed Rank Test	,098
The median of differences between the assessment of Statement 3 in Surveys 1 and 2 equals o. Related-Samples Wilcoxon Signed Rank Test	,032
The median of differences between the assessment of Statement 4 in Surveys 1 and 2 equals o. Related-Samples Wilcoxon Signed Rank Test	,018

Table 5.52: Mean Analysis

Pair		Mean	Standard Deviation
Statement 1	Survey (1)	2.55	1.214
Statement 1	Survey (2)	4.00	0.894
Ctatement a	Survey (1)	3.00	1.183
Statement 2	Survey (2)	4.00	1.000
Ctatament 7	Survey (1)	2.27	1.009
Statement 3	Survey (2)	3.64	1.027
Statement /	Survey (1)	2.73	1.009
Statement 4	Survey (2)	3.91	0.701

Table 5.53: Paired Sample Statistics

Pair		Mean	Standard Deviation
Dair	Overall quality (2)	7.060	2.0850
Pair 1	Overall quality (3)	7.020	2.1170
Pair 2	Intuitiveness (2)	7.710	1.5051
Pall 2	Intuitiveness (3)	7.710	1.0418
Pair 3	Unpredictability (2)	6.360	2.4500
Pall 3	Unpredictability (3)	6.080	2.5728
Pair 4	Difficulty (2)	3.990	2.2487
Pall 4	Difficulty (3)	4.720	1.9263
Pair 5	Believability (2)	7.130	1.7969
Pall 5	Believability (3)	6.980	2.0826

Table 5.55: Mean analysis

Mean
2.50
4.00
4.00
4.50
4.20